Linear systems - Resit exam

Resit exam 2018-2019, Tuesday 9 July 2019, 9:00-12:00

Instructions

1. The use of books, lecture notes, or (your own) notes is not allowed.
2. All answers need to be accompanied with an explanation or calculation.

Problem 1

Solve the initial value problem

$$
\dot{x}(t)+\frac{t}{1+t^{2}} x(t)=\left(1+2 t^{2}\right) \sqrt{1+t^{2}}, \quad x(0)=2 .
$$

Problem 2

Consider the nonlinear system

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{1}(t)-x_{1}(t) x_{2}(t), \\
& \dot{x}_{2}(t)=-x_{1}^{3}(t)+u(t) .
\end{aligned}
$$

(a) Take the nominal input $u(t)=\bar{u}=1$ for all $t \geq 0$. Show that $\bar{x}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$ is the unique equilibrium point corresponding to this input.
(b) Linearize the nonlinear system around $\bar{x}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$ and $\bar{u}=1$.

Problem 3

Consider the linear system

$$
\dot{x}(t)=A x(t)+B u(t)
$$

with state $x(t) \in \mathbb{R}^{2}$, input $u(t) \in \mathbb{R}$, and where

$$
A=\left[\begin{array}{cc}
-7 & -3 \\
22 & 10
\end{array}\right], \quad B=\left[\begin{array}{c}
-1 \\
3
\end{array}\right] .
$$

(a) Is the system controllable?
(b) Find a nonsingular matrix T and real numbers α_{1}, α_{2} such that

$$
T A T^{-1}=\left[\begin{array}{cc}
0 & 1 \\
\alpha_{1} & \alpha_{2}
\end{array}\right], \quad T B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

(c) Use the matrix T from problem (b) to obtain a state feedback of the form $u(t)=F x(t)$ such that the closed-loop system matrix $A+B F$ has eigenvalues -3 and -2 .

Determine all values of $a \in \mathbb{R}$ and $b \in \mathbb{R}$ for which the linear system

$$
\dot{x}(t)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{1}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-b & -a & -2 & -a
\end{array}\right] x(t)
$$

is asymptotically stable.

Problem 5

$(8+4+4=16$ points $)$
Consider the matrices

$$
A=\left[\begin{array}{cc}
-1 & -1 \tag{2}\\
-2 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 2
\end{array}\right]
$$

(a) Determine $e^{A t}$.

In the remainder of this problem, consider the linear system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)
$$

with $x(t) \in \mathbb{R}^{2}, u(t) \in \mathbb{R}, y(t) \in \mathbb{R}$ and the matrices A, B, C given by (2).
(b) Is the linear system externally stable?
(c) Determine the transfer function of the linear system.

Problem 6

Figure 1. Cascade interconnection of two systems
Consider two linear systems

$$
\boldsymbol{\Sigma}_{i}: \quad \dot{x}_{i}(t)=A_{i} x_{i}(t)+B_{i} u_{i}(t), \quad y_{i}(t)=C_{i} x_{i}(t)
$$

for $i \in\{1,2\}$ and their cascade interconnection given by $u_{2}(t)=y_{1}(t)$ as given in Figure 1. Then, the dynamics of the interconnection can be described as

$$
\boldsymbol{\Sigma}: \quad\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & 0 \\
B_{2} C_{1} & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] u_{1}(t)
$$

Assume that A_{1} and A_{2} have no eigenvalues in common (i.e., $\sigma\left(A_{1}\right) \cap \sigma\left(A_{2}\right)=\emptyset$) and that the interconnection $\boldsymbol{\Sigma}$ is controllable.
(a) Show that the matrix pair $\left(A_{1}, B_{1}\right)$ is controllable.
(b) Show that

$$
\operatorname{rank}\left[A_{2}-\lambda I B_{2} T_{1}(\lambda)\right]=n_{2}
$$

for all $\lambda \in \sigma\left(A_{2}\right)$, where n_{2} is the state space dimension of $\boldsymbol{\Sigma}_{2}$ (i.e., $x_{2}(t) \in \mathbb{R}^{n_{2}}$) and T_{1} is the transfer function of $\boldsymbol{\Sigma}_{1}$ given as $T_{1}(s)=C_{1}\left(s I-A_{1}\right)^{-1} B_{1}$.
Hint. Use the Hautus test.

